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The necessary conditions for stability of a shock, that the shock travel with supersonic velocity with 
respect to the medium ahead and with subsonic velocity with respect to the medium behind, are 
shown to be implied by the second law of thermodynamics for very general classes of viscous, 
heat-conducting fluids; the Weyl conditions are not invoked. The results are shown to be also 
compatible with the Le Chatelier-Braun principle. They further imply that under certain conditions it 
is not thermodynamically permissible to assume the existence of a shock transition layer in which 
entropy production is due to heat conduction alone. 
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I. INTRODUCTION 

In studies of the structure and stability of shock waves 
it is usually demonstrated or assumed that a necessary 
condition for a stable shock to exist is that the shock 
travel with supersonic velocity with respect to the me­
dium ahead of the wave and with subsonic velocity with 
respect to the medium behind. 1

-
s These restrictions 

can be expressed by the inequalities 

(1) 

where 

M= I vic I 
is the Mach number, given by the magnitude of the ratio 
of the flow velocity to the local sound speed in a co­
ordinate system in which the shock front is stationary. 
Subscripts "0" refer to the initial state ahead of the 
shock front and subscripts "1" to the final state behind. 

For restricted classes cif materials conditions (1) 
have been shown to follow from the second law .of ther­
modynamics. Thus, Weyl proved (1) for materials sub­
ject to the conditions 

(2) 

Landau and Lifshitz also show that (2) implies (1) for 
compressive shocks in both the weak shock approxima­
tion, in which no distinction is made between Hugoniot 
and isentropiC pressure-volume curves, and for shocks 
of arbitrary strength (Ref. 4, p. 323). Morduchow and 
Libby have derived (1) for an ideal gaS.5 Cowperthwaite 
considered a case in which (2) is violated in the neigh­
borhood of the initial state and showed that a postulated 
compressive shock with final state in this region is im­
possible because it would result in a net entropy de­
crease. 6 This result is consistent with stability argu­
ments based on acoustic wave interactions as described 
by Duvall. 

For rarefaction shocks the arguments are reversed 
so that (1) is valid when (a2plav2)s <0. 

In this paper we show that inequalities (1) are a nec­
essary consequence of the second law of thermodynam­
ics for very general classes of fluids. In particular, 
we do not assume (2), but only the well-known thermo­
dynamic stability criteria, 

(3a) 
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and 

(3b) 

We also assume the existence of an equilibrium surface, 
or fundamental equation, representing the locus of re­
versible paths joining equilibrium states. This surface 
is characterized by the usual relation, 

S=S(E, V,N), (4) 

where S is entropy, E is internal energy, N is mole­
number, and V is volume. If we denote specific quan­
tities per unit mass by s, e, and V and consider only 
closed systems, then (4) is equivalent to 

s=s(e, V) 

which is assumed to be invertible to give e = e( V, s). 
The equilibrium pressure and temperature are defined 
by 

P=P(e, V)= -(aelav)s , 

T= T(e, V)= (aelas)y. 
(5) 

We place no restriction on the amplitude of the shock, 
nor do we assume an explicit form for the constitutive 
equations relating the viscous dissipation and the heat 
conduction to velocity and temperature gradients. 

II. THERMODYNAMIC PRINCIPLES 

Truesdell has given a general formulation of the first 
and second laws for irreversible processes. 7 Follow­
ing his development we write the first law in the form, 

pe=w+divh, (6) 

where p is density, e is the time rate of change of the 
specific internal energy of a mass element, W is the 
rate at which mechanical work is performed on an in­
finitesimal volume containing the mass element, and h 
is the negative of the heating flux vector. The heating 
influx is therefore, 

q=h'n, 

where n is the outward unit normal to the surface of the 
volume. 

The internal dissipation is defined by the relation 

Ii = Ts - V divh . (7) 
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It is thus given by the difference between the rate of 
entropy increase, multiplied by temperature, and the 
rate of energy increase due to heat conduction. 

For reversible processes Gibbs' relation applies 

e= Ts - PV. (8) 

Hence, combining (7) and (8), 

o = e + PV - V divh 

and, employing (6), 

po=w +pPV. (9) 

We now specialize to one-dimensional flow and denote 
the total stress acting in the direction of the flow by u, 
with compressive stress measured positive . Then, . 

w= -puV 

and, therefore 

o=-(u-P)V. (10) 

Note that in this derivation we have not necessarily 
assumed that P, T, or s, are given by their local cur­
rent values, which have not been defined, but are given 
instead by their values on the associated equilibrium 
surface. The real, nonequilibrium path followed by a 
material element is thus mapped onto the equilibrium 
surface at corresponding values of e and V. These lat­
ter quantities, of course, are well-defined whether or 
not equilibrium obtains. In effect, we observe the 
"shadow" of the real process on the equilibrium surface. 

From this point of view it is not obvious that the sec­
ond law need always apply in terms of the quantities 
thus defined. For small deviations from equilib.rium 
the relation (4) still holds, however, and the Second 
Law is also assumed to be valid. We shall restrict our 
attention to such small deviations in the following. This 
point of view is discussed also by Landau and Lifshitz 
(Ref. 4, p. 187). 

The second law, requiring that entropy production be 
positive, is expressed by the Clausius-Duhem inequal­
ity, 

po -h·r~ O, 

where r is defined as 

r= (-I/T)gradT 

= (-l/T)(aT/ax). 

III. APPLICATION TO SHOCKS 

(11) 

(12) 

We now apply these principles, expressed by relations 
(6)-(12), to a steady wave of "permanent regime, " or 
shock wave. The shock transition region joins initial 
and final states which are assumed to be in internal 
thermodynamic equilibrium; it is depicted in a coordi­
nate system in which the front is stationary in Fig. 1. 

Since the wave is stationary and one-dimensional, we 
can write the relation between material and spatial time 
derivatives as 

d/dt= a/at +v a/ax =v a/ax . (13) 
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FIG.!. Shock transition layer, compressive shock. 

Consequently, (12) can be expressed as, 

y= (-l/T)(aT/ax) = - (I/Tv)(dT/dt) 

= - TV1(dT/dV)V, (14) 

where dT/dV is the directional derivative in the equilib­
rium surface of temperature with respect to volume 
along the projection of the path followed by a material 
element as it traverses the shock front, and V is the 
material time derivative, V = dV / dt. 

Application of the Clausius-Duhem inequality, (11) 
also requires expressions for 0 and for h. From (7), 
(10), and (13) we have 

divh= ah/ax=pTs -po 

= p[Ts + (u - P)V] (15) 

or 

dh= pv[Tds/dV + (u-P)]dV. (16) 

To first-order terms in a series expansion about an 
equilibrium state, therefore, 

h(V) -h(V,.)=vp T (ds/dV)(V - V,.) 

or, since the heat flux vector is zero in an equilibrium 
state, V,., 

h(V) = pvTds/(ds/dV)(V - Vf')' (17) 

The mechanical dissipation can also be apprOximated 
by the first term of a series expansion. Thus, 

0= -(u-P)V, 

O(V)= - [du/dV -dP/dV]y (V - V,.)V. ,. 
(18) 

We now note that the path in the u- V plane followed by 
a mass element is represented by the straight line join­
ing the equilibrium end states (Rayleigh line.)8 Its 
slope is given by 

- i= (P1 - PO)/(V1 - yo) = (0'- po)/(V - Yo), (19) 

where j is the mass flux, 
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j=POVO=P1Vl· 

(This relation can be verified by integrating the equa­
tions of continuity and motion through a steady shock 
transition and noting that it is the stress that enters in­
to the equation of motion. Nothing in these two mechan­
ical relations requires an assumption of thermodynamic 
equilibrium.) This relation allows us to write (18) as 

o=(j2+dP/dV)(V-Vr)V. (20) 

Returning to inequality (11), and using the expres­
sions for ')I, h, and 0 from (14), (17), and (20), we have 

V(V - Vr )[j2+dP/dV + (dT/ dV)(ds/dV)]v/~: 0, (21). 

where, as previously stated, the derivatives are evalu­
ated on the equilibrium surface along the path repre­
senting the projection of the real path. 

There are four cases to consider depending on 
whether the shock is a compression or a rarefaction 
shock, and depending whether the reference equilibrium 
state is ahead of or behind the shock. 

For compression shocks we have V < 0, and, 

(i) Vr = V1, V> Vr , 

(ii)Vr=Vo, V<Vr ; 

while for rarefaction shocks, V> 0, and, 

(iii) Vr = V1, V < Vr , 

(iv) Vr = Vo, V> Vr • 

With respect to the sign of the bracketed quantity in 
(21) therefore, cases (i) and (iii) referring to the head 
of either type of shock are equivalent, as are cases 
(ii) and (iv) referring to the foot of the shock. Thus, 

j2+dP/dV+(dT/dV)(ds/dV):50 (head), (22a) 

2'! 0 (foot). (22b) 

The directional derivatives of relation (21) can be ex­
pressed in terms of the derivatives of (3) and hence in 
terms of properties of the equilibrium surface by the 
identities, 

and 

ds/dV= (as/av)p + (as/ap)v (dP/dV) 

= (ap/aT)s - (av/aT)s (dP/dV) 

= (av/aT)s [(ap/av)s -dP/dV] 

dT/dV= (aT/av)s + (aT/as)v(ds/dV) 

= (aT/av)s + (aT/as)v(av/aT)s[(ap/aV)s - dP/dV]. 

Substituting into (21) gives 

V(V - vr}{l + (ap/av)s + (av /aT)~ (aT/as)v 

[(ap/av)s -dP/dV]2) ;;; 0. (23) 

Although we make no direct use of it, we note that 
(23) can be written in a more symmetric way by use of 
the thermodynamic identity 

778 Phys. Fluids, Vol. 18, No.7, July 1975 

Equation (23) then becomes 

V(V - Vr){[j2+ (ap/av)s][(ap/aV)T - (ap/av)s] 

+ [(ap/av)s -dP/dV]2}vr ;;; 0 

or 

v(V - Vr){(j2+ (ap/av)s](j2 + (ap/avh]- 2[l+ (ap/av)s] 

x(j2+dP/dV]+(j2+dP/dV]~v ;:; 0. (24) 
r 

This relation is equivalent to (21) and is an expression 
of the second law, (11), to the first nonvanishing terms. 

From (23) it is already clear that at the head of the 
shock, V(V - V1):5 0, we must have 

j2+ (ap/av)s ;:; 0 

or, in view of (3a) , 

-l(av/ap)s ;:; 1. (25) 

It is readily shown, however, that M2 = -ita v/ap)s 
and therefore, (25) gives 

M~ ;:; 1, M 1 ;:;1 

as expected. 

(26) 

Examination of (23) or (24), at the foot of the shock, 
however, does not lead to the other expected inequality, 
i. e., M~ ;:; 1. Moreover, as Truesdell notes, invoking 
only the inequality (11), admits the possibility that 
either contribution to the entropy production could by 
itself be negative if it were compensated for by suf­
ficient entropy production by the other term. 7 This 
would admit such peculiar circumstances as negative 
diSSipation accompanying a large heat flux. Conversely, 
sufficiently large dissipation could be accompanied by 
heat flow in the same direction as the temperature 
gradient, i. e., heat could flow uphill. 

It will now be assumed that each term of the inequality 
(11) must be positive. This appears justifiable, for 
example, by noting that according to the usual classical 
assumption (Fourier conduction law) 

h= - RY, 

where k is a positive coefficient. Under this law, the 
second term of the inequality (11) becomes 

- h • Y = k(y • y) > O. 

Moreover, it is usually assumed, in accordance with 
the Navier-stokes equations (Ref. 4, p. 337), that the 
dissipative stress, a - P, is, for one -dimensional flow, 

a - P= - [(4/3)n +~](dv/ dx) 

= - [(4/3)n+~]pV, 
where the viscosity coefficients, n and ~, are both nega­
tive. From Eq. (10), it then follows that under this 
assumption, the first term of the inequality (11) will be, 

pO = [(4/3)n+~]p2V2 >0. 

These assumptions concerning the constitutive relations 
can be considered to be empirical laws, or to be simply 
the first-order terms in a series expansion valid for 

G. R. Fowles 778 



small temperature or velocity gradients. The princi­
pal significance for our purposes is that there are no 
cross-coupling terms -that could cause either term of 
inequality (11) to make a negative contribution to the 
entropy production. 

In place of inequality (23), we now have two inequal­
ities, 

(27a) 

and 

V(V - vr)[(ap/av)s -dP/dv][(ap/av)T -dP/dV] ~ O. (27b) 

First considering the head of the shock, for which 

v(V - Vr) ~ O, we have 

j2+dP/dV~0; dP/dV ~ _j2, (28a) 

[(ap/av)s -dP/dV][(ap/avh -dP/dV] ~ O. (28b) 

The latter inequality requires that the slope, dP/dV, 
be intermediate between the isentropic and isothermal 
derivatives, while (28a) requires that it be less than 
the slope of the Rayleigh line. Consequently, the more 
restrictive of the inequalities 

(ap/aV)s ~ dP/dV ~ {<1p~aV)T 
obtains. 

(29) 

If we consider the foot of the shock, V( V - Yo) ~ 0, we 
have, in place of (28), 

j2+dP/dV~0 (30) 

and 

[(ap/av) .. -dP/dv][(ap/ aV)T -dP/dV] ~ O. (31) 

These have the solutions, 

dP/dV~ _j2 

and either (i) 

dP/dV~ (ap/aV) .. , 

dP/dV ~(ap/aV)T' 

or, (ii) 

dP/dV~ (ap/aV) .. , 

dP/dV;:;. (ap/aV)T • 

(32) 

(33) 

(34) 

The two solutions, (33) and (34), are seen to exclude 
the function 1'( V) from the region between the isentrope 
and isotherm. If we assume (34) can be correct, how­
ever, and compare two hypothetical materials which 
differ only in the coefficient of thermal conduction, k, 
then the effect of heat flow would be to increase the 
mechanical diSSipation. This is contrary to the Le 
Chatelier-Braun prinCiple which states that secondary 
processes induced as a result of a primary process will 
act in a direction to reduce the primary thermodynamic 
stress difference. 9 Consequently, we take (33) to be the 
correct result, and it then follows that 

-l~dP/dV~ (ap/aV) .. 

and, further, 
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(35) 

(36) 

This is the other result expected. 

The restrictions on the slope dP/ dV specified by (35) 
and by (29) are shown in Fig. 2. 

It is clear from the diagram that an alternate argu­
ment for the exclusion of the solution (34) can be based 
on the continuity of the curve, P(V). For weak shocks 
state 1 approaches state 0 and Sl approaches So (the so­
called weak shock approximation. )10 However, since 
1'(V) is excluded from the region between So and To and 
is confined between Sl and T l , P(V) can be continuous 
only under the conditions shown, i. e., only if (34) is 
excluded. 

It is interesting to note that the result (29) requires 
that, whenever the isotherm falls below the Rayleigh 
line at the head of the shock, i. e. , 

(ap/av)T < -l,. 
then since dP/dV«ap/aV)T, it is necessary that some 
diSSipation occur to account for at least the difference 
in stress between the isotherm and the Rayleigh line. 
Thus, under these conditions it is not possible to as­
sume strictly nonviscous behavior no matter how con­
ductive the material. 11 The converse is not true, how­
ever; there seem to be no restrictions that would rule 
out nonconducting but viscous behavior as assumed by 
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FIG. 2. Allowed regions for the slope dPjdV in the stress­
volume plane for a compressive shock. Curves labeled 50 and 
To are the isentrope and isotherm through the initial state and 
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Band in his studies of shock structure. 8 For this latter 
case it is clear from (17) that ds / dV = 0 and, moreover, 

dP/dV= (ap/av). + (ap/as)v (ds/ dV) = (ap/av)s' 

IV. CONCLUSIONS 

We may summarize the conclusions as follows. 

(1) The subsonic-supersonic conditions for shocks, 
Mo ~ 1, M1;;;; 1 are a consequence of the second law of 
thermodynamics for viscous, heat conducting fluids with 
arbitrary equation of state. It is not necessary to in­
voke the additional conditions, 

(2) The effect of heat conduction is to reduce the 
mechanical dissipation in accord with the Le Chatelier­
Braun principle. 

(3) Under the condition, 

(ap/a V)T < _j2 

at the head of the shock, it is not thermodynamically 
permissible to assume for any material that entropy 
production is due to heat conduction alone. That is, 
some viscous dissipation is necessary. This would rule 
out such predicted phenomena as the "isothermal dis­
continuity (Ref. 4, p. 342)." 

(4) For all materials for which the quantity (apjas)v 
is positive in the shocked state, the entropy must attain 
a maximum value in the transition region. This con­
clusion agrees with that derived earlier for an ideal 
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gas. S 

These conclusions depend on the correctness of the 
assumption that the contributions to entropy production 
due to mechanical dissipation and to heat conduction are 
individually positive. 
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